Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 3239, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050165

RESUMO

The human mitochondrial AAA+ protein LONP1 is a critical quality control protease involved in regulating diverse aspects of mitochondrial biology including proteostasis, electron transport chain activity, and mitochondrial transcription. As such, genetic or aging-associated imbalances in LONP1 activity are implicated in pathologic mitochondrial dysfunction associated with numerous human diseases. Despite this importance, the molecular basis for LONP1-dependent proteolytic activity remains poorly defined. Here, we solved cryo-electron microscopy structures of human LONP1 to reveal the underlying molecular mechanisms governing substrate proteolysis. We show that, like bacterial Lon, human LONP1 adopts both an open and closed spiral staircase orientation dictated by the presence of substrate and nucleotide. Unlike bacterial Lon, human LONP1 contains a second spiral staircase within its ATPase domain that engages substrate as it is translocated toward the proteolytic chamber. Intriguingly, and in contrast to its bacterial ortholog, substrate binding within the central ATPase channel of LONP1 alone is insufficient to induce the activated conformation of the protease domains. To successfully induce the active protease conformation in substrate-bound LONP1, substrate binding within the protease active site is necessary, which we demonstrate by adding bortezomib, a peptidomimetic active site inhibitor of LONP1. These results suggest LONP1 can decouple ATPase and protease activities depending on whether AAA+ or both AAA+ and protease domains bind substrate. Importantly, our structures provide a molecular framework to define the critical importance of LONP1 in regulating mitochondrial proteostasis in health and disease.


Assuntos
Proteases Dependentes de ATP/ultraestrutura , Proteínas Mitocondriais/ultraestrutura , Proteases Dependentes de ATP/antagonistas & inibidores , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Envelhecimento/metabolismo , Bortezomib/farmacologia , Domínio Catalítico/efeitos dos fármacos , Microscopia Crioeletrônica , Ensaios Enzimáticos , Humanos , Hidrólise , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Oxirredução , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos/genética , Proteólise , Proteostase , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
2.
Biochem Biophys Res Commun ; 495(1): 1201-1207, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180014

RESUMO

Prompt removal of misfolded membrane proteins and misassembled membrane protein complexes is essential for membrane homeostasis. However, the elimination of these toxic proteins from the hydrophobic membrane environment has high energetic barriers. The transmembrane protein, FtsH, is the only known ATP-dependent protease responsible for this task. The mechanisms by which FtsH recognizes, unfolds, translocates, and proteolyzes its substrates remain unclear. The structure and function of the ATPase and protease domains of FtsH have been previously characterized while the role of the FtsH periplasmic domain has not clearly identified. Here, we report the 1.5-1.95 Å resolution crystal structures of the Thermotoga maritima FtsH periplasmic domain (tmPD) and describe the dynamic features of tmPD oligomerization.


Assuntos
Proteases Dependentes de ATP/química , Proteases Dependentes de ATP/ultraestrutura , Peptídeo Hidrolases/química , Peptídeo Hidrolases/ultraestrutura , Multimerização Proteica , Thermotoga maritima/enzimologia , Sítios de Ligação , Simulação por Computador , Ativação Enzimática , Modelos Químicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Relação Estrutura-Atividade
3.
Science ; 358(6363)2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29097521

RESUMO

We present an atomic model of a substrate-bound inner mitochondrial membrane AAA+ quality control protease in yeast, YME1. Our ~3.4-angstrom cryo-electron microscopy structure reveals how the adenosine triphosphatases (ATPases) form a closed spiral staircase encircling an unfolded substrate, directing it toward the flat, symmetric protease ring. Three coexisting nucleotide states allosterically induce distinct positioning of tyrosines in the central channel, resulting in substrate engagement and translocation to the negatively charged proteolytic chamber. This tight coordination by a network of conserved residues defines a sequential, around-the-ring adenosine triphosphate hydrolysis cycle that results in stepwise substrate translocation. A hingelike linker accommodates the large-scale nucleotide-driven motions of the ATPase spiral relative to the planar proteolytic base. The translocation mechanism is likely conserved for other AAA+ ATPases.


Assuntos
Proteases Dependentes de ATP/química , Membranas Mitocondriais/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Proteases Dependentes de ATP/ultraestrutura , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Hidrólise , Modelos Moleculares , Domínios Proteicos , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Especificidade por Substrato
4.
J Mol Biol ; 427(4): 910-923, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25576874

RESUMO

Metalloproteases of the AAA (ATPases associated with various cellular activities) family play a crucial role in protein quality control within the cytoplasmic membrane of bacteria and the inner membrane of eukaryotic organelles. These membrane-anchored hexameric enzymes are composed of an N-terminal domain with one or two transmembrane helices, a central AAA ATPase module, and a C-terminal Zn(2+)-dependent protease. While the latter two domains have been well studied, so far, little is known about the N-terminal regions. Here, in an extensive bioinformatic and structural analysis, we identified three major, non-homologous groups of N-domains in AAA metalloproteases. By far, the largest one is the FtsH-like group of bacteria and eukaryotic organelles. The other two groups are specific to Yme1: one found in plants, fungi, and basal metazoans and the other one found exclusively in animals. Using NMR and crystallography, we determined the subunit structure and hexameric assembly of Escherichia coli FtsH-N, exhibiting an unusual α+ß fold, and the conserved part of fungal Yme1-N from Saccharomyces cerevisiae, revealing a tetratricopeptide repeat fold. Our bioinformatic analysis showed that, uniquely among these proteins, the N-domain of Yme1 from the cnidarian Hydra vulgaris contains both the tetratricopeptide repeat region seen in basal metazoans and a region of homology to the N-domains of animals. Thus, it is a modern-day representative of an intermediate in the evolution of animal Yme1 from basal eukaryotic precursors.


Assuntos
Proteases Dependentes de ATP/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Metaloendopeptidases/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Proteases Dependentes de ATP/genética , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Escherichia coli/enzimologia , Hydra/enzimologia , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
5.
Mol Cells ; 21(1): 129-34, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-16511355

RESUMO

Lon, also known as protease La, belongs to a class of ATP-dependent serine protease. It plays an essential role in degradation of abnormal proteins and of certain short-lived regulatory proteins, and is thought to possess a Ser-Lys catalytic dyad. To examine the structural organization of Lon, we performed an electron microscope analysis. The averaged images of Lon with end-on orientation revealed a six-membered, ring-shaped structure with a central cavity. The side-on view showed a two-layered structure with an equal distribution of mass across the equatorial plane of the complex. Since a Lon subunit possesses two large regions containing nucleotide binding and proteolytic domains, each layer of the Lon hexamer appears to consist of the side projections of one of the major domains arranged in a ring. Lon showed a strong tendency to form hexamers in the presence of Mg(2+), but dissociated into monomers and/or dimers in its absence. Moreover, Mg(2+)-dependent hexamer formation was independent of ATP. These results indicate that Lon has a hexameric ring-shaped structure with a central cavity, and that the establishment of this configuration requires Mg(2+), but not ATP.


Assuntos
Proteases Dependentes de ATP/química , Escherichia coli/enzimologia , Polímeros , Protease La/química , Proteases Dependentes de ATP/ultraestrutura , Trifosfato de Adenosina/farmacologia , Escherichia coli/efeitos dos fármacos , Magnésio/farmacologia , Modelos Biológicos , Protease La/ultraestrutura , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...